TREHERE DIRILE] 5245 156—24 2013F3 R

Ranking Based Evaluation of Algorithms That Estimate The
Difficulty Level of A Combinatorial Puzzle Instance

Kazuya HARAGUCHI

Department of Information Technology and Electronics, Faculty of Science and Engineering,
Ishinomaki Senshu University, Ishinomaki 986-8580

Abstract

We propose a novel framework to evaluate an algorithm that estimates the difficulty level of a
combinatorial puzzle instance like Sudoku. The highlight is that we employ the notion of ranking
to evaluate such algorithm. In the evaluation framework, we first design a test set of puzzle in-
stances somehow. The algorithm gives numerical scores to these instances so that they represent
the difficulty levels. The scores naturally induces a ranking on the test set, from an “easy” instance
to a “difficult” one. Besides, we prepare another “true” ranking by aggregating the opinions of
human solvers, where reasonable aggregation can be made by Majority Ranking from the social
choice theory. Then, we measure the distance between the two rankings; the smaller the distance is,
the better the algorithm should be. We describe the advantages of the proposed framework through

a case study on BlockSum puzzle.

1 Introduction

Combinatorial puzzles are employed in primary
education or employment examination these
days, and it is significant to develop such algo-
rithms to generate puzzle instances of various
types automatically™™®. Further, it should be
useful to classify the generated instances by
their difficulty levels. However, estimation of
difficulty level is not an easy task since diffi-
culty itself is a subjective concept and the diffi-
culty levels that ones feel for a puzzle instance
should be different from solver to solver. Even
so, if we dare to do this, we may need to evalu-
ate the difficulty estimation algorithms based
on human solvers’ behavior in solving puzzle
instances.

In this paper, we propose to evaluate a diffi-
culty estimation algorithm for a combinatorial
puzzle based on ranking. In fact, there have
been developed several algorithms that esti-
mate the difficulty level of a given puzzle in-

@D These algorithms

stance automatically
deliver a numerical score to the instance based
on how it is solved by the assumed computa-

tional model; during the solving process, the

harder situations the model encounters, the
higher the score becomes.

When we evaluate the effectiveness of a diffi-
culty estimation algorithm, we first collect a
set of benchmark puzzle instances. We call this
benchmark instance set a test set. In general, it
is not easy to interpret the meaning of the nu-
merical score given by a difficulty estimation
algorithm. For example, one instance [is not
“twice as difficult as another instance J” since
the score of Iis the double of the score of J. The
score becomes meaningful only for comparison.
Therefore, what we should observe is not the
actual values of the scores but the ranking on
the test set that is induced by the numerical
order of the scores. We call this ranking the
score ranking.

Given a test set, the algorithm to be evalu-
ated induces the score ranking automatically.
Then how do we identify whether the score
ranking is good or bad? Apart from the score
ranking, we prepare a target ranking on the
test set somehow, say the true ranking. By
this, we can measure the distance between the

score ranking and the true ranking by such

Ranking Based Evaluation of Algorithms That Estimate The Difficulty Level of A Combinatorial Puzzle Instance

metrics as Kendall-tau distance. The smaller
the distance is, the better the algorithm should
be. This is the proposed way of evaluating diffi-
culty estimation algorithms.

The key issue is whether we can have a “rea-
sonable” true ranking or not. Our approach is
described as follows; We bring together numer-
ous human solvers and let them solve the in-
stances in the test set. We then aggregate the
“opinions” of the solvers into the true ranking
by utilizing a technique called Majority
Ranking® from the social choice theory. There
are many representation forms of “opinions.”
Solving time (a numerical value) is not defi-
nite, and we should try other possibilities, e.g.,
rating (a discrete value). No matter which the
“opinion” is represented by a numerical value
or by a discrete value, Majority Ranking ag-
gregates the “opinions” into a reasonable rank-
ing.

As a case study, we take up BlockSum puzzle.
Like Sudoku, BlockSum puzzle asks to fill the
cells in an n X7 grid with integers so that the
integers form an nXn Latin square and satisfy
an additional condition. Haraguchi et al. devel-
oped a difficulty estimation algorithm for

@ The algorithm has

BlockSum puzzle recently
several ad-hoc parameters as other algorithms
do. We investigate which parameter configura-
tion induces the score ranking nearest to the
true ranking. Then we observe that some class
of configurations induces score rankings
nearer to the true ranking than other class.
This tendency does not appear so explicitly as
long as we use Pearson correlation coefficient
as the criterion.

The paper is organized as follows. We review
related works in Section 2. In Section 3, we pre-
pare terminologies on ranking and BlockSum
puzzle, along with our difficulty estimation al-
W In Section 4, we present the pro-
difficulty

estimation algorithms. Then we present a case

gorithm

posed framework to evaluate

study on BlockSum puzzle in Section 5. Finally,
we present concluding remarks in Section 6.

2 Related Works

Previous difficulty estimation algorithms are
mainly developed for Sudoku. In the previous
algorithms, the difficulty level of a given
Sudoku instance is estimated by the number of
cells that can be fulfilled by a certain constraint

D the number of fixed

(5)

propagation scheme'
cells<4), the size of search tree*”, and the sum of
weight values of the techniques that are used to
solve the instance®. In the papers(4'5’7), the ef-
fectiveness of an algorithm is evaluated by how
the difficulty scores fit to the ratings that are
given by a puzzle designer. Since difficulty level
is a subjective concept, the opinion of only one
human is not sufficient to represent the true
difficulty level. Thus we should take into ac-
count the opinions of various solvers from nov-
ices to experts to realize the true difficulty
level. Then, Palanek® collects anonymous
solvers on the Internet and evaluates the algo-
rithms by Pearson correlation coefficient be-
tween the difficulty scores and the average
solving times. However, solving time is not the
only item that can represent the true difficulty
level. Our proposal is to evaluate difficulty esti-
mation algorithms by means of ranking dis-
tance. In the proposed framework, Majority
Ranking enables us to construct a reasonable
true ranking from data on numerous human
solvers’ behavior, no matter which the true
level is represented by numerical items or by
discrete items.

3 Preliminaries

3.1 Ranking

For a natural number n, we denote [n] ={1, 2,
..., ny. Let S denote any set of elements. A
ranking on S (or a ranking of the elements in
S) is a function 7:S— [[S|]. For any ¢S, the

value 7(a) represents the rank of a. We assume

Kazuya HARAGUCHI

any ranking to be partial, that is, we may have
a tie 7(a) =n(b) for some a, b=S (a#b). For
a partial ranking 7 and any ordered pair (a, b)
€S XS of elements, we define §,(a, b) = —1if
w(a) <z(b), 6,(a, b) =1 if 7(a) >z(b), and
6.(a, b) =0 otherwise. Note that &,(a, b) =
—06,(b, a). To measure the closeness between
two partial rankings 7 and 7/, we introduce a
generalization of Kendall-tau distance®'?. De-
noted by d(z, 7’), this metric is defined as fol-

lows;

d(m, ') = > . 16.(a, b)—6,(a, b)|.

1
2 (ap)ES
@)

3.2 Latin Square and BlockSum Puzzle
Let n>2 denote a natural number. Given an
nXn grid of cells, we denote a cell in the i-th
row and in the j-th column by (7, j) & [nF. Let
us denote an assignment of integers in [n] to
the cells by a function ¢: [nF — [n]; the value
¢ (i, 7) represents the integer assigned to cell
(7,). The function ¢ is partial in general. We
may represent ¢ by a set of triples 7,=
{(4, 7, (i,)14, j) is defined}. A function
¢:[n*— [n] is an extension of ¢ if ¢(i, j) =
¢(1, 7) whenever ¢(i,7) is defined. In other
words, ¢ is an extension of ¢ if T,27,. We call
¢ a partial Latin square if any two triples (G,
7o v and (7, 7, v) in T, satisfy at least two of
the followings: i# 17, j#j or v#v. We simply
call ¢ a Latin square if it is a total function.
An instance of BlockSum puzzle is given as
an nXn grid of cells such that the set of 7* cells
is partitioned into disjoint subsets called
blocks, each block being assigned an integer in
[n(n+1)/2]. We assume that each block is
connected, 1i.e., it is made out of side-adjacent
cells. Given a BlockSum instance, a solver is
asked to fill all the #* cells with integers in
[n] so that the following two conditions are
satisfied.

7 7 71 4 9 73

°F 4P213 1

’ 21314

° 3P1]4]2
(Instance) (Solution)

Figure 1: A BlockSum instance and its solution (n=4)

Latin square condition: In each row and in each
column, any integer in [n] appears exactly

once.

BlockSum condition: In each block, the sum of
the integers assigned to the cells equals to
the number assigned to the block.

In Figure 1, we show a BlockSum instance for
n=4, together with its solution.

Let us give a mathematical formulation of
BlockSum puzzle. Two cells (i,) and (7', 1) are
adjacent if 1i—1|+17—7|=1. The adjacency de-
fines the connectivity of cells. A block is a sub-
set of connected cells. We represent a BlockSum
instance by I= (P, o), where P denotes a parti-
tion of the #* cells into blocks and o denotes a
function o:P— [n(n+1)/2]. For any block
BEP, 0(B) denotes the integer assigned to B.
We call B a unit block if |[B|=1. Two blocks B
and B’ are adjacent if there exist (4, j) €B and
(7,7) €B that are adjacent. We can regard
the rule of BlockSum puzzle as follows; given
an instance /= (P, 0), the solver is asked to
find out such a function ¢:[n)* — [n] that is a
Latin square (Latin square condition) and that
satisfies 2, j <0 (i, j)=0(B) for any BEP
(BlockSum condition). We call ¢ a solution of I
if ¢ satisfies the above two conditions. We call
@ a partial solution of I if there exists an exten-
sion of ¢ that is a solution of 1.

Ranking Based Evaluation of Algorithms That Estimate The Difficulty Level of A Combinatorial Puzzle Instance

3.3 A Difficulty Estimation Algorithm for
BlockSum Puzzle

We describe our algorithm™ that estimates the
difficulty level of a BlockSum instance. The al-
gorithm retains a collection R of inference
rules. Starting with the partial solution ¢ with
T,=0, the algorithm attempts to solve the
given instance /= (P, 0) by applying the infer-
ence rules in R repeatedly. An inference rule
states that, if I and ¢ satisfy a certain condi-
tion, we can specify an integer v that should be
assigned to a certain empty cell (i,). In this
case, we can update the partial solution T,<=
T,U {4, 7, v)}. Later we introduce examples of
inference rules.

Assume that I has been solved by the way de-
scribed above. Then the algorithm estimates
the difficulty level of I by computing the score
as follows; That I is solvable is guaranteed by a
sequence s= ((i,, 7,, 1), (y, Jo, 1), ..., (2, Iz,
72)), which represents that the instance is
solved by filling cells from (i, 7,) to (i, 7,2) by
applying inference rules 7 to 7z, respectively.
Each inference rule r in R is given a parameter
value called weight. The weight represents the
sophistication level of the inference rule; the
larger the weight is, the more sophisticated the
rule should be. We denote the weight of r by
w(7r). Then we define the score of I with respect
to s, denoted by p,(I), as the sum of the

weights of 7, 7, ..., 72 in the sequence s;
1 2 n

o.(D =wln) +wlr) +-+wlr). (2)

There may exist plural sequences that guaran-
tee the solvability of /. Among these, we use
such s that is obtained as follows; When we try
to solve the instance, we need to decide (i, 7,
r) for k=1, 2, ..., n*. If there are plural candi-
dates for (i, j,,), we choose the (i, j,,) that
attains the minimum weight w(7) since we
would like to model the behavior of human
solvers who may prefer simple rules that have

small weights. We denote the score of I with

respect to such obtained s by p(I) =p,(I), and
simply call p(I) the score of I. We expect that,
the larger o(I) is, the more difficult it should
be. In the rest of the paper, we focus on the in-
stances that can be solved by the way described
above. Hence any instance is given a numerical
score by the algorithm.

Before closing this section, we describe the 10
inference rules that are used in the case study
of Section 5. Among these, 9 rules are already
explained in the paper”, where 4 rules are de-
rived from Latin square condition and the
other 5 rules are derived from BlockSum condi-
tion. In what follows, the instance is denoted
by I= (P, 0), a partial solution of I is denoted
by ¢, the empty cell that an inference rule fills
with an integer is denoted by (7, /) and the inte-
ger assigned to (i, ;) is denoted by wv.

The 4 inference rules from Latin square condi-
tion We denote these 4 rules by 75, 7, n-° and
7S, The 7S states that, if n—1 distinct integers
are already assigned in the n—1 cells of the i-th
row except (i, j), or the n—1 cells in the j-th
column except (7, 7), assign the remaining inte-
ger to (i, /). The 7° is a generalization of 7° as
follows; Let C denote the set of cells in the i-th
row and in the j-th column except (7, j). Thus
we have |C|=2(n—1). The 7° states that, if
n—1 distinct integers appear in C, assign the
remaining integer to (i, /). The 7 states that,
if an integer v is already assigned to certain
n—1 cells out of the i-th row and out of the j-th
column, assign v to (i, /). The 71° is a generali-
zation of 7%, but we omit the details since they
are not significant in the subsequent discus-

sion.

The 5 inference rules from BlockSum condition
We denote these 5 rules by 7, 5, 5 | 7 and
75, Let B denote the block which (i, /) belongs
to. The 7 states that, if Bis a unit block, then

assign 0(B) to (i, j). The 7™ is a generalization

Kazuya HARAGUCHI

of 7* and states that, if integers are already as-
signed to all the cells in B except (i, /), then as-
sign 0(B) minus the sum of these integers to
(7, J). Observe that the sum of n integers in one
row (resp., in one column) should be 1+2+ -
+n=n(n+1)/2. We can specify v if we can tell
the sum of the integers in all the cells in the i-
th row (resp., in the j-th column) except (i,)
due to some reason. In such a case, we can as-
sign n(n+1)/2 minus the sum to (i, j). For ex-
ample, the cell (1, 1) in the left of Figure 1 is
assigned (14+2+3+4)—9=1. The n*, ™ and
7% are based on this idea, but we omit the de-
tails.

The remaining inference rule is special in the
sense that it assumes the list of candidate inte-
gers for each empty cell.

The special inference rule We denote the special
inference rule by 7*. Let us denote an empty cell
by (i,7) € [nF. For each integer v'& [n], take
a partial solution 7,U {(4, 7, v)} and suppose
updating it by using the 9 inference rules
above. During the process, if we encounter an
assignment that violates Latin square condi-
tion or BlockSum condition, then we can ex-
clude v" from the candidates for (i,). The r*
states that, if all the n—1 integers except v are
excluded in this way, we can assign v to (i, j).
(Similarly, r* assigns v to (i, j) if v cannot be
assigned to (7, j) for any 7' [n]({#1i),orif v
cannot be assigned to (i, /') for any 7€ [n]
G+

4 Evaluation Framework

In this section, we explain how to evaluate a
difficulty estimation algorithm. First, we de-
sign a set of benchmark instances, which we
call a test set. Given a test set, the algorithm
induces a ranking of the instances by the nu-
merical order of the scores. More precisely, let
us denote the test set by I={[,IL,..., L},

where each I, (i€ [p]) denotes an instance.
Then if o)) <p(l,) <--<p(l,), we have a
ranking z(1) =1, z(L,) =2, ..., z(,) =p. We
call a ranking on the test set induced in this
way a score ranking. Apart from the score
ranking, we construct the “true” difficulty
ranking on the test set. This is called the true
ranking. We compare the score ranking with
the true ranking by the generalized Kendall-
tau distance in (1). The smaller the distance is,
the better the algorithm should be.

We do not discuss how to generate a test set.
Assuming that the test set is given, we explain
how to construct the true ranking on it
through observation on human solvers. In
Section 4.1, we describe how to sample the data
on human solvers’ behavior. In Section 4.2, we
present the technique Majority Ranking® that
computes a ranking on the test set from the
sampled data. We use this computed ranking as
the true ranking.

4.1 How to Sample Data on Human Solvers’
Behavior

To sample the data, we let human solvers solve

the instances of the given test set. Prior to this,

we need to determine the following matters:

(i) the human solvers whom we ask to solve
the instances,

(ii) the environment in which the solvers solve
the instances, and

(iii) the items we should observe when the

solvers solve the instances.

One matter should be determined by taking
others into account since they are related to
each other. We show two example schemes as
follows.

(@ For (1), we may employ real human

Ranking Based Evaluation of Algorithms That Estimate The Difficulty Level of A Combinatorial Puzzle Instance

solvers. For example, if we are school teachers,
we can collect students as solvers. In this case,
we can utilize handouts to let the solvers solve
the instances for (ii). More precisely, we print
handouts on which the instances are written
like the left of Figure 1. Then the solvers write
the solutions on the handouts. For (iii), the
item can be the number of cells to which correct
integers are not assigned, i.e., the cells to which
incorrect integers are assigned or that are left
empty. An instance should be harder if many
solvers cannot give correct integers to the 7°
cells. We can also sample the data on such items
as solving time and ratings by asking each
solver to record the values of these items.

(b) We can collect anonymous solvers on the
Internet for (i). In this case, we need to set up
such a computer environment for (ii) that ad-
mits the solvers to solve the instances and that
can store the data on their behavior. For (iii),
we can sample the data on more detailed items
automatically than (a), e.g., which integer is
assigned to which cell in which time.

A main difference between (a) and (b) lies in
the possible number of human solvers. Thou-
sands of anonymous solvers are collected from
the Internet in Palanek’s paper®, whereas it is
hard to collect such a large number of real
solvers. However, (a) is not necessarily inferior
to (b). The virtue of (a) is that we can control
the solvers. More precisely, we can make the
solvers work on the puzzle intensively in (a),
whereas it is harder to do so in (b). Then we
can be more confident on the data sampled by

(a) even though the number of solvers is small.

4.2 Majority Ranking

Focusing on a certain item of the sampled data,
we obtain a profile like Table 1. In this profile,
the item is the rating given by a human solver

that takes easy, normal, or hard. We explain

Majority Ranking that computes a difficulty
ranking on the test set from such a profile.
Let us denote the number of the instances in
the test set by p and the number of the human
solvers by g. Let us denote the test set by /=
{1, I, ..., I} and the set of the human solvers
by H= {hy, hy, ..., h,} . Each instance &1 is
given a grade by each human solver 2, H. The
grade is an element of a totally ordered set D
that is given. We denote the total order on D by
<. Higher grades are used to represent that
an instance is harder. For example, if we focus
on a numerical item such as solving time, D is
the set of real numbers and <, is the usual
arithmetic order. If we focus on a discrete item
such as rating, D is the set of discrete ordered
values, e.g., D= {easy, normal, hard}. In this
case, we may take easy <, normal <, hard.
Then we have a p X ¢ matrix A= (a; ;) such
that a; ; indicates the grade which 7 is given by
h;. Given a matrix A, Majority Ranking com-
putes a ranking on [by the following proce-
dure.
1. For each instance I, (1€ [p]), sort the g

grades a4, , a; 3, ..., a; , In the non-decreasing

iq
order of <. Let us denote the sorted sequence
by gi= (d;, di s ...

/ 7/ 7/
U1 Spdis<p " =p a; g

d;). The grades satisfy

2. For each instance [;, construct a sequence
g; = (aj, a;, ... a;,) by taking a; ,(GE [¢])
as follows.

a’i{ﬂ if j=1,

if 7>2

and ¢=j(mod 2),

if =2

and ¢#j(mod 2).

One sees that af; is the median of all the ¢
grades, a, 4, ..., a; ,, given to the instance . To
be more general, a; ; is the median of {a; 1, ...,
a; J\aiy, .. al;).

3. We have p sequences ¢, g5, ..., g, , each of

Kazuya HARAGUCHI

Table 1: Difficulty ratings of b instances I}, ..., I; given by 7 human solvers h, ..., h;

n, h, hg n, hs hg h;
1, normal easy hard hard normal hard easy
1, hard easy normal easy normal easy normal
1 hard normal easy normal hard hard normal
A hard normal normal easy hard normal normal
I easy normal normal easy normal normal hard

Table 2: Application of Majority Ranking to the profile of Table 1

’ ’

’ / , ’

i Qi dis Qi 4 ais Qi Qi1
g, easy easy normal normal hard hard hard
I easy easy easy normal normal normal hard
g5 easy normal normal normal hard hard hard
g easy normal normal normal normal hard hard
gs easy easy normal normal normal normal hard

ais aiy ais ai, ais ais ais
g; normal normal hard easy hard easy hard
g, normal easy normal easy normal easy hard
gs normal normal hard normal hard easy hard
g normal normal normal normal hard easy hard
gs normal normal normal easy normal easy hard

which corresponds to one instance. Using the
total order <, on the grade set D, we define the
lexicographic order <, on the sequences; we
write g, < p g, if there exists & [¢] such that

% * % * % d *

;1 =0y 1, Qi 2= Ay oy ooy Qj ;1= Ay -1, ANA Q; ;
<pay ;. Induce the ranking of the p instances
from the lexicographic order of the p se-

quences.

We use the output of this procedure as the
true ranking. Basically, Majority Ranking
evaluates an instance by means of the median
of the grades that are given to the instance.
The meaning of using the median is described
as follows; An instance should be at least as
hard as the median grade since a half of the
solvers give higher or equal grades. Similarly,
the instance should be at least as easy as the
median grade since a half of the solvers give
lower or equal grades. The computed ranking
satisfies several reasonable properties, but we
omit the details due to space limitation.

We apply Majority Ranking to the profile of
Table 1. We show the sequences ¢}, ..., g5 and
gr, ..., g in Table 2. Let us denote the obtained
true ranking by z*. Then we have 7*(,) =1,
7* () =2, 7*(I,) =3, 7z*(1}) =4 and z*([;) =5.
The true ranking regards I, as the easiest and
I, as the hardest.

5 A Case Study on Block-Sum Puzzle

In this section, we report a case study on the
difficulty estimation algorithm for BlockSum
puzzle, which was presented in Section 3.2. The
algorithm has weights of the inference rules as
adjustable parameters. If we take different
weight configurations, an instance is given dif-
ferent scores (see (2)), and the resulting score
ranking may vary. We observe which parame-
ter configuration of the algorithm induces the
score ranking nearest to the true ranking.

5.1 Experimental Settings
To generate the test set, we produce 9 instances
(n=5) by the generation algorithm that was

Ranking Based Evaluation of Algorithms That Estimate The Difficulty Level of A Combinatorial Puzzle Instance

W This algorithm gener-

proposed by the paper
ates such an instance (P, o) that can be solved
by applying the inference rules of a given col-
lection R. The algorithm first chooses an nXn
Latin square ¢ randomly for the solution of the
generated instance. Then, once P is determined,
o is automatically determined by the chosen
Latin square, that is, the algorithm sets
0(B) =2 i epe(i, j) for any block BEP.
Starting with the partition such that all blocks
are unit blocks G.e., P={(i, DI, 1)) € [nT),
the algorithm repeats merging two adjacent
blocks into one block as long as the instance
(P, 0) can be solved by means of the inference
rules in R. We produce 9 instances by taking R
as the set of 10 inference rules in Section 3.3.
Computing the score of each instance, we ob-
tain the score ranking on the test set. The diffi-
culty estimation algorithm has weights of the
10 inference rules as adjustable parameters.
One weight configuration assumes an ordering
of the inference rules on sophistication level
that is represented by a weight value. We con-
sider two classes of weight configurations, de-
noted by w* and w?®, that assume the following
orderings;
w! () <w' () <w' P <w ()
<w' (%) <w' () <w ()
<w* (%) <w GFS) <w(r),
w? (P <GPS <w) <w(rfS)
<w’ (i) <uw’ () <uw’(1B®)
<w’ () <w’(5®) <w’(r),

where the only difference is the relative order

between {5, 75} and {5, °°}, as indicated by
the underlines. Recall that these 4 inference
rules are the simplest among the 10 inference
rules. We introduce w* and w” to investigate
which of {#%, 75} and {5, 7’5} should be given
larger weights. Changing the relative differ-
ence between weight values, we try 4 concrete
configurations for each class. The configura-
tions are denoted by w?, ..., w! and w? ..., w?,
and are defined as follows.

e For w!, we define wi(r®) =w!(%>) =1/5,
Wi =wi () =2/5, wi(nS)=w(r"®
=3/5, wi () =w! (%) =w! (#) =4/5, and
wi(r*) =5/5=1. For w?, we use the same
weights as w! except w? (1) =u? (1) =1/5
and wh(7%) =ud (15 =2/5.

e Let u'(r) (resp., u?(7)) denote the order of
inference rule r in the configuration class
w” (resp., wP); ie., ' (rS) =1, v (r®) =2,
() =10, PGPS =1, L WP =10.
For w{ and w%, we define wj(r) =u*(r)/10
and w5(7) =u?(r)/10 for any inference rule
r.

e For w! and w?, we define wi(r) =271
and w(7) =guP(n-10

e For wj and w}, we define w(r) —gut(n-10
and w5(7) =guPn-10

Once we fix a parameter configuration, the al-
gorithm computes the score of an instance. The
score of an instance I for a parameter configu-
ration wi(k=1, ..., 4) (resp., w%) is denoted by
0 (D) (resp., 05(1)). We denote the score rank-
ing on the test set induced from the order of
0% by m; (resp., o} by 7).

We describe how we construct the true rank-
ing on the test set. We employ the scheme (a)
in Section 4.1 to sample the data on human
solvers’ behavior. We collect 18 students in the
author’s institution. After explaining the rule
of BlockSum puzzle, we let each solver solve the
9 instances one by one and record the solving
time and the difficulty rating that the solver
supposes for each instance. We limit the solving
time to 600 seconds in order to prevent the
solver from taking too much time; if the solver
cannot solve an instance in 600 seconds, he
must go on to the next instance. When the

solver finishes solving an instance or cannot

Kazuya HARAGUCHI

Table 3: Generalized Kendall-tau rank correlation coefficients between score rankings and true rankings

Incorrect or empty cells Solving time Rating
k(xf, 7%) k(xk, 7%) k(zd, ") k(zf, ") k(xf, 1) k(zf,)
k=1 .7500 1222 .6667 6667 1222 7222
2 7361 7361 6528 .6806 7083 .7361
3 .7500 7778 .6667 .6944 1222 .7500
4 1222 .7500 .6944 7222 .6944 7222

solve it within 600 seconds, he should choose
the rating from 3 discrete ordered values, easy,
normal and hard. Then we construct the true
ranking for each of the 3 items, i.e., the number
of cells to which the solver gives incorrect inte-
gers or that are left empty, solving time and
rating, which we denote by 7%, z7, and 7%, re-
spectively. For z7, we set the domain of the
grade to a set of discrete ordered values,
D= {0, 1, ..., 599} U {over 599}, with the total
order 0 <, 1 <, -+ <,599 <,” over 599” since
we limit the solving time to 600 seconds.

It seems preferable that we have solvers of
various levels. To realize expert solvers, we
gave handouts for practice to a half of the 18
students one week before the above test and let
them work on practice. The handouts do not
contain the instances of the test set. We con-
firmed that the other half of the solvers did not
have great experience in solving BlockSum in-
stances as of the test. For each instance of the
test set, those who had been given practice
handouts tended to give more correct integers
than those who had not been given.

5.2 Results

We compare weight configurations w¢{ and w?
with the same k(k=1, ..., 4), to observe which
one yields a score ranking nearer to the true
rankings. We show the result in Table 3. In
Table 3, the indicated values are generalized
Kendall-tau rank correlation coefficients. Let
7 and 7° denote partial rankings. Denoted by
k(7 '), the generalized Kendall-tau rank cor-
relation coefficient is defined as (7, z") =
1—d(z,) /(SI(IS|—1)), where S denotes the

set of elements to be ranked. The coefficient
takes a value from —1 to 1. The smaller the dis-
tance d(m, 7’) 1is, the larger the coefficient
k(xm, ') is. It is interesting to see that, for all
the true rankings, the class w” tends to yield a
nearer score ranking than the class w?. Besides,
among the 3X4=12 entries, w” is better than
w' in 8 entries (which are indicated by bold-
face), w” ties w' in 3 entries (which are indi-
cated by underlines), and w® is worse than w”
in only 1 entry. The observation suggests that
{rS, 15} from Latin square condition should be
given larger weights than {7, #*} from
BlockSum condition. Let us note that the true
rankings are not relatively far from each other;
k(7 7") =9167, k(7 7)) =.9722 and k(z7, z?)
=.9444.

For comparison, in Table 4, we show Pearson

correlation coefficients™"

between difficulty
score values and medians of item values that
are observed over the 18 solvers. We see advan-
tages of our evaluation framework over the one
based on Pearson correlation coefficient; Since
Pearson correlation coefficient does not sup-
port discrete values in principle, we cannot use
rating to represent the true difficulty levels.
For z” | it appears hard to adapt Pearson corre-
lation coefficient to the time limit setting. We
regard its median value as 600 when it is “over
599,” and thus the coefficient is not rigorous.
By definition, Pearson correlation coefficient is
less stable against observed item values than
Kendall-tau rank correlation coefficient. Table
4 contains a slight difference of coefficients
(e.g., .T367 and .7364 for k=3 in the number of

incorrect integers), and it is not easy to decide

Ranking Based Evaluation of Algorithms That Estimate The Difficulty Level of A Combinatorial Puzzle Instance

Table 4: Pearson correlation coefficients between actual score values
and medians of observed item values

Incorrect or empty cells

Solving time

o 7 o o

k=1 7215 6935 6460 .6560
2 7180 6945 6534 .6539
3 7367 7364 6628 6626
476 7366 6630 6630

whether the difference is significant. Thus, it is
hard to draw a conclusion from this table.
Based on these, we assert that difficulty esti-
mation algorithms should be evaluated by
means of ranking distance rather than Pearson
correlation coefficient.

6 Concluding Remarks

In this paper, we proposed to utilize the notion
of ranking to evaluate the effectiveness of a dif-
ficulty estimation algorithm for combinatorial
puzzle. We compared weight configurations of
a single algorithm in the case study although
the proposed framework is originally intended
for comparison of variant algorithms. For fu-
ture work, we need to apply the proposed
framework to larger data that include more
human solvers and instances. We should also
try other puzzle generation algorithms in order
to get some feedback.

References

(1) Haraguchi K, Abe Y, Maruoka A (2012) How to
produce BlockSum instances with various levels of dif-
ficulty. Journal of Information Processing 20-3: 727-
737

(2) Haraguchi K (2013) The number of inequality

signs in the design of Futoshiki puzzle. Journal of

Information Processing 21-1 (to appear)

(3) Haraguchi K, Maruoka A (unpublished manu-
script) Puzzle instance design problem in a generaliza-
tion of “Eight Blocks to Madness.”

(4) Lewis R (2007) Metaheuristics can solve sudoku
puzzles. Journal of Heuristics 13: 387-401

(5) Ono S, Miyamoto R, Nakayama S, Mizuno K
(2009) Difficulty estimation of number place puzzle
and its problem generation support. Proc. ICCAS-
SICE: 4542-4547

(6) Pelanek R (2011) Difficulty rating of Sudoku
puzzles by a computational model. Proc. Florida
Artificial Intelligence Research Society Conference:
http://www.aaai.org/ocs/index.php/FLAIRS/
FLAIRS11/paper/view /2517

(7) Simonis H (2005) Sudoku as a constraint prob-
lem. Proc. 4th International Workshop of Modelling
and Reformulating Constraint Satisfaction Problems:
18-27

(8) Balinski M, Lavaki R (2010) Majority Judgment.
MIT Press.

(9) Fagin R, Kumar R, Mahdian M, Sivakumar D,
Vee E (2006) Comparing partial rankings. SIAM
Journal on Discrete Mathematics 20-3: 628-648

(10) Kemeny JG, Snell JL (1973) Mathematical
Models in the Social Sciences (2nd edition). MIT Press.
(11) Edwards AL (1976) An Introduction to Linear

Regression and Correlation. W.H. Freeman.

