[AEFEXRE HIRICE] $£245 7-13 2013F3 A

Constructing A Classifier by Searching The Ranking Space
Kazuya HARAGUCHI

Department of Information Technology and Electronics, Faculty of Science and Engineering,
Ishinomaki Senshu University, Ishinomaki 986-8580

Abstract

In this paper, we consider the classification problem, one of the significant issues in machine
learning and artificial intelligence. Motivated by the fact that most of the classifier models inher-
ently utilize the notion of ranking, we propose a framework of constructing a classifier by search-
ing the ranking space. Specifically, we assume the existence of a true ranking and construct such
a binary decision tree that induces a ranking close to the true one. We validate our strategy by
showing the effectiveness of the decision trees constructed by the algorithm; our decision trees are
competitive with those generated by C4.5, in terms of generalization error.

1 Introduction

We consider the classification problem. In this
problem, we are given a training set, which is a
set of examples. Each example is represented by
an n-dimensional vector of numerical and/or
nominal values and is given its class, which is
either positive (+) or negative (—). The goal
of the problem is to construct a function from
the example space to the class set {4+, —} so
that the function can predict the classes of “un-
seen examples” with high accuracy. The func-
tion to be constructed is called a classifier. The
classification problem is one of the most sig-

(1-5)

nificant issues in machine learning and has

(6

many applications in data mining"” and in pat-

tern recognition”.

In this paper, we introduce a novel strategy
for the classification problem and validate the
strategy by showing the effectiveness of a bi-
nary decision tree classifier that is constructed
by a learning scheme based on it.

The main keyword of our strategy is rank-
ing. As pointed out in previous studies®'V
many existing classifiers are equipped with
ranking functions either explicitly or implic-
itly. A ranking function induces a ranking on
the training set, from the most “likely” nega-
tive example to the most “likely” positive ex-
ample. For example, we take up hyperplane,

the most prevalent classifier model, which is

represented by a pair (w, 0) of an n-
dimensional vector w= (w,, w,, ..., w,) ER" and
a threshold O=R. It classifies a numerical ex-
..., ,) by which side of the
hyperplane wx+6 the example  exists in, that

ample r= (2, z,,

1s, the hyperplane classifies x into the class de-

cided by;
sgn< % wixi+9> ,

i=1

where sgn(-) denotes a function that returns
(+) if the value in the parentheses is positive
and (—) otherwise. Then the value wxr+0
serves as the ranking function that gives the
non-decreasing order of examples with respect
to wx+60. Taking into account that the abso-
lute value | wx+6| represents the distance be-
tween the hyperplane (w, ) and the example
x, we can regard the head example in the rank-
ing as the most likely negative example, and
the tail example as the most likely positive ex-

ample.

Based on the observation that many classifi-
ers induce a ranking on the training set, we try
to construct a classifier by searching the rank-
ing space. Specifically, assuming the existence
of the true ranking, we search for such a classi-
fier that induces a ranking close enough to the
true one. The classifier model we employ here is

binary decision tree since it is relatively easy to
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establish the connection between a classifier
and a ranking. As most of the similar algo-
rithms do, our binary decision tree construc-
tion algorithm consists of two processes,
branching and pruning. To decide how we ex-
tend the decision tree by branching the leaves,
and to decide the degree to which we prune the
tree, we introduce novel criteria coming from
the view that a binary decision tree induces a
ranking on the training set. To validate our
strategy, we show that binary decision trees
constructed by our algorithms are competitive
with those constructed by C4.5(12), a conven-
tional decision tree generator, through compu-
tational experiments using benchmark data
sets from UCI Repository of Machine Learn-

U9 Many classifier construction algo-

ing
rithms have adjustable parameters, by which
we may tell the algorithms our “subjective
view” on the data. Although our algorithm
does not have such parameters and C4.5 has
ones, ours works so well as C4.5. This indicates
the possibility of our strategy based on rank-
ing to construct a classifier.

The paper is organized as follows. We present
the background and related works in more de-
tail in Section 2. After preparing terminologies
and notations in Section 3, we explain how to
construct a binary decision tree classifier based
on our strategy in Section 4. Then in Section 9,
we show some experimental results to validate
the strategy. Finally, we present concluding re-

marks in Section 6.

2 Background

We are pursuiting a novel learning model from
a nominal data set such that an example is rep-
resented by a vector of only nominal values. We
pay attention to the order relation between ex-
amples, and attempt to embed its concept in the
learning model. There are two typical strate-
gies to construct a classifier from a nominal

data set. One strategy transforms the nominal

data set into a numerical data set and then con-
structs a hyperplane based classifier like sup-
port vector machine. This strategy treats the
data set in a distance space and thus inherently
utilizes the order relation between examples.
The other strategy partitions the example
space (i.e., the Cartesian product of the attrib-
ute domains) into subspaces and assigns either
(+) or (—) to each subspace. This does not
utilize the order relation between examples in
general. We claim that our new learning model
should be between the two typical strategies
since ours does not utilize the concept of dis-
tance but only employs the order relation. In
this paper, we give realization of such learning
model in more general settings in which we can
treat not only nominal data but also numerical
data.

In the last decade, various attempts have
been made that utilize the ranking function to
(8—11)' The
ranking function of a classifier can be evalu-
ated by the area under ROC curve (AUC). AUC
indicates the probability by which a random

improve the classifier performance

positive example 1s ranked after a random
negative example. A classifier with a high AUC
1s expected to perform well. It is known that
AUC 1s a more robust criterion against the
change of the class distribution than error rate.
The previous studies employ the notion of AUC
maximization to improve the classifier per-
formance. As we will see later, the notion of
AUC maximization is also employed in our de-
cision tree construction algorithm.

Recently, due to its various applications in
the Internet context (e.g., search engines, rec-
ommendation), ranking itself is often treated
as the target of machine learning. For example,
Freund, Iyer, Schapire and Singer(w formu-
lated the problem of learning a ranking from a
given preference list and applied the boosting to
the problem. This is not the machine learning

problem that we treat in this paper.
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Decision tree construction has been studied
by researchers from artificial intelligence and
related fields over 20 years. For detail, see the

U9 " We find many algo-

survey in the paper
rithms implemented in Weka"® , the well-

known open source machine learning software.

3 Preliminaries

In this section, we prepare notations and
terminologies. We denote a training set by
X={z,, x,, ..., z,,}, where m denotes the number
of examples in the training set. Each example
;€ X has n values for n attributes and is repre-
sented by an n-dimensional vector of numerical
and/or nominal values, that is, ;= (z;}, Z;5, ...,
z;,). The domain of an attributej =1, 2, ..., nis
denoted by D;. For example, if the attribute jis
numerical, then D;=R, and if the attribute 7" is
nominal, then D; is a finite countable set of un-
ordered elements. Let X (resp., X ) denote the
set of positive (resp., negative) examples in X.
So we have X=X"UX and X' NX =0.

We denote a binary decision tree by 7= (V, L
ALy, 7, Gy, D) Yoy, {€lwer), where V denotes
the set of the inner nodes, and L denotes the set
of the leaves. The binary decision tree 7 has the
root node, and each inner node has exactly two
children. For each inner node vEV, the [,,
7,& VUL represent the left child and the right
child of v, respectively. Each v is associated
with a branching rule that is represented by a
pair of j, and b,; the integer j,&1{1, 2, ..., n} rep-
resents the index of an attribute, and 0, is a
mapping such that b,:D; = {0, 1}. In other
words, the function b, gives either 0 or 1 to an
example x according to the value z;. For b, of a
numerical attribute j,, we restrict ourselves to
the class of threshold functions, that is, with a
real threshold OER, the function gives b,(z; )
=1 (resp., 0) if x; >0 (resp., x; <0). For b, of a
nominal attribute j,, we concentrate on such a
function that is defined by a subset DED; and
that gives b,(z;) =1 (resp., 0) if x; ED (resp.,

x; €(D;\D)). Each leaf wEL is labeled either
positive (+) or negative (—). The value ¢, &
{+, —} represents the class of a leaf w.

A classifier is a function D, XDy, X+ XD, —>
{4+, —}, that is, it outputs either (+) or (—)
in response to an input example x. The binary
decision tree T works as a classifier as follows.
Starting from taking the root as v, we evaluate
the value b,(x; ) for the current inner node v. If
b,(x;) =0 (resp., 1), then we update v to the
left child I, (resp., right child #). This process
is repeated until we visit a leaf. Then T outputs
the class ¢, of the reached leaf w.

For a leaf w of a binary decision tree 7, let us
denote by X(w) the set of the examples in X
that visit the leaf w when given to 7 as input.
We also denote by X' (w) and X (w) the sets
of the positive and negative examples in X(w),
respectively.

A ranking on the training set X is a function
m:X—1{1, 2, ..., m}. For any z€X, the value
7(x) represents the rank of x. We assume any
ranking to be partial, that is, we may have a tie
n(x) =n(x’) for somex, 2’EX (x#z"). The de-
gree of 7 1s defined as the size of the range. We
denote the degree of 7 by deg(x). So we have
deg(m <11, 2, ..., m} .We say that 7 separates X
if 7(x~) <z(x") holds for any negative exam-
ple X  and positive example x X ". In
other words, any negative example is ahead of
all the positive examples with respect to 7.

For a partial ranking 7 and any ordered pair
(z, ) EX XX of examples, we define 6,(z, ')
= —1 if z(zx) <zx(z), 6,(x, 2') =1 if
7(x) >r(x), and 6,(z, ') =0 otherwise. Note
that 6, satisfies 6,(z, ) = —6,(z’, ). To meas-
ure the closeness between two partial rankings
7 and 7', we introduce a generalization of
Kendall-tau distance™® . Let us define;

Az, 2) = L

—?I(S,Z(I, )06, (x, )|

Thus we have A (z, 2') € {0, %, 1}. Denoted

_9_
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by d(z, 7’), the Kendall-tau distance between
7 and 7’ is defined as follows;

d(r, ') =

(z, z’)eXxxA”’”/(x' ). M
Bansal and Fernandez-Baca"” presented two
algorithms to compute d (7, 7’), where one runs
in O(mlog m/loglog m) time and the other
runs in O(n log(min{deg (), deg(z)})) time.

A decision tree induces a ranking on the
training set X such that the examples visiting
the same leaf have the same rank, those visit-
ing different leaves have different ranks, and
the leaves are ordered appropriately. We denote
the number of the leaves by k=|L|. Then there
are k! rankings possible. Among these, we em-
ploy the ranking that is obtained by ordering
the leaves in the non-increasing order of
| X (w)|/IX " (w)|. More precisely, we order

the k leaves w,, w,, ..., w, so that;

X w)l X (w)l _ _1X (wl
X (w)| = X ol = E1X (wp]

We describe the reason why we utilize this one.

@

In our study, we evaluate a decision tree by the
Kendall-tau distance between the induced rank-
ing 7 and a certain separating ranking z’. The
Kendall-tau distance of (1) is decomposed as
follows.

d(z, ') =

(z,2) EX"'XX

Az, 2)

+ 2

(z,2) €X xX

A, oz, 2)

+2 P

(z,2) EX XX

A, oz, 2).
When 7’ is separating, the summation in the

last term is equal to W= () +%W7 (7), where;
k—1 ‘ k
w* (7[) = 2 |X <wl+)| 2 |X (w[*)L
I'=1 I =1"+1
k
W (n) = El I X (w1 X (w)p .

Besides, let us define W~ (z) as follows;

W@ = 31X )l 21X (). @)

We easily see that W (m)+ W (z)+ W (n)
=|X"IIX | holds. Since W (x) is a constant
regardless of the choice of the ordering on the

leaves, we should maximize W~ (x) in (3) in
order to minimize W~ (7z)+%W’ (7). The ra-

tio W~ (m)/(IX"|X|) is equivalent to AUC,
which was mentioned in Section 2. Then we
have a good reason to maximize W~ (z). We
can easily show that, among all the possible k!
rankings, the one in (2) achieves the maximum
value of W~ (). Based on these, we employ the
ranking defined by (2).

4 Learning Algorithm

In this section, we present the algorithm to
construct a binary decision tree classifier based
on our strategy for the classification problem.
First we describe what kind of decision tree we
would like to have. We should construct a deci-
sion tree so that it classifies the classes of un-
seen examples as accurately as possible. We
assume the existence of the true model.
Assumption 1 We assume that there is a clas-
sifier that classifies the class of any example
correctly.

We call this classifier the true classifier. We
would like such a decision tree that is close to
the true classifier in a sense, but of course, we
do not know its exact form. From the observa-
tion so far on the relationship between a classi-
fier and the induced ranking, we make an
assumption on the true classifier.

Assumption 2 We assume that the true classi-
fier induces a separating ranking.

We call this ranking the true ranking. We at-
tempt to construct a decision tree such that the
ranking induced in the way of (2) is close
enough to the true ranking. Of course, how-
ever, we do not know the exact form of the true
ranking. Then we make an additional assump-
tion on the true ranking based on Occam’s

(20-22)

Razor , the belief employed in the scientific
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research of various fields, also in machine
learning, stating that entities should not be
multiplied unnecessarily.
Assumption 3 The degree of the true ranking
s “relatively small.”
We do not go into the detail of what the term
“relatively small” exactly means. The degree of
the true ranking can be from 2 to m, and our
intention in Assumption 3 is that it should not
necessarily be as large as m.

Now we describe our algorithm to construct
a decision tree. The algorithm consists of two
In the
branching process, we search for a decision tree

processes, branching and pruning.
that induces a separating ranking. This is be-
cause we assume in Assumption 2 that the true
ranking is separating and it would not be natu-
ral to complete the construction task without
finding such a decision tree that induces a sepa-
rating ranking. The branching process starts
from a single node tree and branches the leaves
iteratively (i.e., giving new two children to
each leaf) until the resulting decision tree in-
duces a separating ranking. Let v denote any
leaf of an intermediate decision tree. We give a
branching rule (j,, b,) to v in order to attach
two children to the leaf v, denoted by [, and 7,.
To the leaf v, we choose the branching rule (j,,
b,) that minimizes the distance between the in-
duced ranking and the nearest separating
ranking, where the ranking is focused on the
subset X(v) of the examples. Divided by (j,,
b,), X(l,) (resp., X(r,)) becomes the subset of
X(v) such that any example z in the subset sat-
isfies b,(x; ) =0 (resp., 1). Also we have;
X'(v) =X"()UX" (n),

X (v) =X (UY)UX (r).

We assume that the following inequality holds
without loss of generality;

XUl 1X ()

IX U T IXT ()l

We denote the distance between the induced

@

ranking and the nearest separating ranking by
£,G,, b,). One can readily see that f,(j,, b,) is de-
fined as follows.

£y b)) =2[X"UDIX ()]
X UDIXT ()]

X I XT DL %)
The branching process terminates if the deci-
sion tree induces a separating ranking.

Then, in the pruning process, we prune the
leaves of the decision tree iteratively as long as
the distance between the induced ranking and
the binary separating ranking gets smaller.
Denoted by B, the binary separating ranking
gives a rank to an example x& X as follows.

0 ifzeX",
B(x) = {

1 otherwise.

We denote the k leaves of the decision tree by
Wy, Wy, ..., W, which are ordered in the way of
(2). The distance d(x, 8) is defined as follows;

d(z,§) = —2W ()~ ¥ IX(w)’

+const. 6)
If the decision tree has a leaf such that remov-

ing the leaf results a smaller d(z, 8) than the
current tree, then we remove the leaf that at-
tains the smallest d (z, 8). Otherwise, we ter-
minate the pruning process. Clearly, 8 is the
separating ranking that has the smallest de-
gree. From Assumption 3, we would like the de-
cision tree to get close to 8. After the pruning
process, the resulting decision tree may not in-
duce a separating ranking but is expected to
have a smaller size. It is interesting to see that,
to minimize the distance of (6), we should
maximize W~ (z) in the 1st term which is pro-
portional to AUC, and at the same time, the
summation in the 2nd term which may repre-
sent the “simplicity” of the decision tree.

Finally, we summarize the algorithm that we
described so far in Algorithm 1.
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Algorithm 1 Algorithm to construct a decision tree

Branching process

1: Take a decision tree that consists of a single node, de-
noted by v

2: L<{v} > L is the set of leaves

3: while there is v&L such that X (v) #0 and X (v) #0
do

4: Compute the branching rule (j,, b,) that minimizes the
distance £,(j,, b,) in (5) under the assumption of (4)

5: L<=(LU {1, rn})\{v}

6: end while
Pruning process

7. d*<=d (z;, B), where 7; denotes the ranking induced by
the decision tree T

8: while the decision tree has a leaf w such that d(z;_,, 8) <
d* do

9: Compute the leaf w that minimizes d(z;_,, )

10: d*<d(zyp 0, B), T T—w

11: end while

5 Computational Experiments
In this section, we present some experimental
results to validate our strategy. In the experi-
ments, we compare the “generalization abil-
ity” between the decision tree constructed by
our algorithm and the one constructed by
C4.59% The generalization ability i1s measured
by the error rate of the classifier.

We show the results in Table 1. We took 18
benchmark data sets from UCI Repository of

U9 The 2nd column 7 indi-

Machine Learning
cates the number of attributes of each data set.
The 3rd and 4th columns indicate the numbers
of examples in the training set and the test set,
respectively. The 5 data sets named ADULT,
IONO, MONKS-1, MONKS-2 and MONKS-3
have their own test sets. For these data sets, we
construct a classifier from the training set and
measure the error rate on the test set. For the
other data sets, we estimate the error rate by
the average over 50 iterations of 10-fold cross

029 Some data sets contain exam-

validation
ples with missing values, and we removed such
examples in advance.

Our algorithm does not have any adjustable
parameter, and we show the error rates of two
decision trees in the table, unpruned one (.e.,

one that is constructed by the branching

process and does not undergo the pruning proc-
ess) and pruned one. On the other hand, C4.5
has various adjustable parameters. Among
these, the confidence level is one of the most in-
fluential parameter since it decides the degree
of pruning. We set the confidence level to 1%,
109, 25%, 50%, 75% and 99% while we set the
other parameters to the default values. In the
column for C4.5, we show the smallest error
rate among those observed by different values
of the confidence level. Although we give C4.5
such advantages, our algorithm and C4.5 are
competitive; ours outperforms (resp., ties and
loses to) C4.5 in 8 (resp., 2 and 8) data sets.
Our algorithm is rather straightforward and
has much room for improvement. Nevertheless,
it 1s competitive with C4.5, a conventional deci-
sion tree generator. This should validate our
strategy of constructing a classifier by search-
ing the ranking space.

6 Concluding Remarks

In this paper, we introduced a novel strategy
for the classification problem; we assume the
true ranking and search for such a classifier
that induces a ranking close enough to the true
one. We assert that our experimental results
support the validity of this strategy. For fu-
ture works, we should improve the decision tree
construction algorithm further. To realize this,
we need a sophisticated model of the ranking
space that admits us to conduct an effective
search. Such a model may require new parame-

ters to control the search.
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